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(57) ABSTRACT

An image synthesis system includes a computing platform
having a hardware processor and a system memory storing
a software code including a neural encoder and multiple
neural decoders each corresponding to a respective persona.
The hardware processor executes the software code to
receive target image data, and source data that identifies one
of'the personas, and to map the target image data to its latent
space representation using the neural encoder. The software
code further identifies one of the neural decoders for decod-
ing the latent space representation of the target image data
based on the persona identified by the source data, uses the
to identified neural decoder to decode the latent space
representation of the target image data as the persona
identified by the source data to produce a swapped image
data, and blends the swapped image data with the target
image data to produce one or more synthesized images.
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Fig. 3A
Lvl Encoder Activation Output shape  Params

8 Input Image~_335 - 3 x 1024 x 1024 -
Conv1x1  LeakyReLU 16 x 1024 x 1024 64

Conv3x3  LeakyReLU 16 x 1024 x 1024 2.3k

Conv3x3  LeakyReLU 32x 1024 x 1024 4.6k
Downsample - 32x 512 x 512 -

7 Conv3x3 LeakyReLU 32x512x512 9.2k

Conv3x3  LeakyReLU 64 x512x 512 18k
Downsample - 64 x 256 x 256 -

6 Conv3x3 LeakyReLU 32 x 256 x 256 37k

Conv3x3  LeakyReLU 128 x 256 x 256 74k
Downsample - 128 x 128 x 128 -

5 Conv3x3  LeakyReLU 128 x 128 x 128 148k

Conv3x3  LeakyReLU 256 x 128 x 128 295k
Downsample - 256 X 64 x 64 -

4 Conv3x3  LeakyReLU 256 X 64 x 64 590k

Conv 3 x3  LeakyReLU 512 x 64 x 64 1.2M
Downsample - 512 x32x 32 -

3 Conv3x3  LeakyReLU  512x32x 32 2.4M

Conv3x3 LeakyReLU  512x32x 32 2.4M
Downsample - 512 x 16 X 16 -

2 Conv3x3  LeakyRelLU 512x 16 x 16 2.4M

Conv 3 x3  LeakyReLU 512 x 16 x 16 2.4M
Downsample - 512 x8x 8 -

1 Conv3x3  LeakyReLU 512x8x 8 2.4M

Conv3x3  LeakyReLU 512 x 8x 8 2.4M
Downsample - S12x4 x4 -

0 Conv3x3  LeakyReLU 512 x4 x4 2.4M

Conv4 x4  LeakyReLU 512x1x1 4.M

Latent vector~_344 - 512x1x 1 513

23.1M
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Fig. 3B /316
Lvl Decoder Activation Output shape  Params
0  Latent vector~—344 - 512x 11 -
Conv4x4  LeakyRelLU S512x 4 x 4 4.2M
Conv3x3  LeakyReLU 512x 4x 4 2.4M
1 Upsample - 512x 8 x 8 -
Conv3x3  LeakyReLU 512x 8 x 8 2.4M
Conv3x3  LeakyReLU 512x8x 8 2.4M
2 Upsample - 512 X 16 X 16 -
Conv3x3 LeakyReLU  512x16x 16 2.4M
Conv3x3  LeakyReLU 512 x 16 x 16 2.4M
3 Upsample - 512 x 32 x 32 -
Conv3x3  LeakyReLU 512 x 32 x 32 2.4M
Conv3x3  LeakyReLU 512 x 32 x 32 2.4M
4 Upsample - 512 x 64 x 64 -
Conv3x3  LeakyReLU 256 x 64 x 64 1.2M
Conv3x3 LeakyReLU 256 x 64 x 64 590k
5  Upsample - 256 x 128 x 128 -
Conv3x3  LeakyReLU 128 x 128 x 128 295k
Conv3x3  LeakyReLU 128 x 128 x 128 148k
6 Upsample - 128 x 256 x 256 -
Conv3x3  LeakyReLU 64 x 256 x 256 74k
Conv3x3  LeakyReLU 64 x 256 x 256 37k
7 Upsample - 64 x 512 x 512 -
Conv3x3 LeakyReLU 32x512x 512 18k
Conv3x3 LeakyReLU 32x512x 512 9.2k
8 Upsample - 32 x 1024 x 1024 -
Conv3x3  LeakyReLU 16 x 1024 x 1024 4.6k
Conv3x3  LeakyReLU 16 x 1024 x 1024 2.3k
Conv1x1 sigmoid 3 x 1024 x 1024 51

23.1M
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Fig. 4 450

Receive target image data, and source data
that identifies one of multiple personas

451

Map the target image data to a latent space
representation of the target image data using

a neural encoder 452

Identify the one of multiple neural decoders
that corresponds to the persona identified by
the source data for use in decoding the latent
space representation of the target image data
453

Use the identified one of the multiple neural
decoders to decode the latent space
representation of the target image data as the
persona identified by the source data to

roduce a swapped image data
p pp g 454

Blend the swapped image data with
the target image data to produce

one or more synthesized images 455
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Synthesis of Source Image with Target Image

Input: source image S and target image T of equal sizes, set of outer
facial landmarks L in image T, standard deviation o,
generated face image resolution r (in our case 1024)

Output: blended output image O

n=logs(r

Decompose source image S and target image T into corresponding

Laplacian pyramids P (S); and P (T);, where i is a pyramid level,
= {1, ne:

Initialize output pyramid P (O) for output image O of the same sizes

as P (T) and fill its values with zeroes;

fori=1tondo

Compute background mask M; defined as an image of the same
size as P(T);, where all pixels in the interior of the polygon
formed by L are equal to 0 and 1 otherwise;

‘\zI, =G (v‘\fi} a), where G (ﬁ:fg, a) denotes gaussian smoothing

of M; with standard deviation o;
Calculate face mask: M; = 1 — M;;
Copy background from the target image to the output image:
P(0O), = P(O), + M;P(T), ;
if i < 2 then
Copy face from the target image to the output image:
P{O); =P(O); + MiP(T);;
else
Copy face from the source image to the output image:

P(0); = P(O); + M;P(S); :
end
Reconstruct and return output image O from P{O);

end

Fig. 5
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AUTOMATED IMAGE SYNTHESIS USING A
COMB NEURAL NETWORK
ARCHITECTURE

RELATED APPLICATION(S)

[0001] The present application claims the benefit of and
priority to Provisional Patent Application Ser. No. 62/850,
439, filed May 20, 2019, and titled “Comb Networks for
High-Resolution, Multi-Subject Face Swapping,” which is
hereby incorporated fully by reference into the present
application.

BACKGROUND

[0002] The transfer of a visual image from a source to a
target domain is an important problem in visual effects. One
exemplary application of such image transfer involves the
transfer of a performance from a target performer to a source
actor, which may be necessary if the source actor is deceased
or must be portrayed at a different age.

[0003] Unfortunately, many conventional approaches to
performing image transfer produce low resolution images
with heavy artifacting. Although techniques for producing
higher resolution images exist, they are typically time con-
suming and painstakingly manual processes, requiring the
careful structuring of filmed scenes, the placement of physi-
cal landmarks on the target performer, and manual fitting of
a computer generated likeness on the target performer’s
face. Moreover, despite the higher resolution achievable
using such manual and costly methods, an uncanny aesthetic
effect often remains.

SUMMARY

[0004] There are provided systems and methods for per-
forming automated image synthesis using a comb neural
network architecture, substantially as shown in and/or
described in connection with at least one of the figures, and
as set forth more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG.1 shows a diagram of an exemplary system for
performing automated image synthesis using a comb neural
network architecture, according to one implementation;
[0006] FIG. 2 shows an exemplary image synthesis soft-
ware code suitable for use by the system shown in FIG. 1,
according to one implementation;

[0007] FIG. 3A shows implementational details of a neural
encoder suitable for inclusion in the image synthesis soft-
ware code shown in FIG. 2, according to one implementa-
tion;

[0008] FIG. 3B shows implementational details of any one
of multiple neural decoders suitable for inclusion in the
image synthesis software code shown in FIG. 2, according
to one implementation;

[0009] FIG. 4 shows a flowchart presenting an exemplary
method for performing automated image synthesis using a
comb neural network architecture, according to one imple-
mentation; and

[0010] FIG. 5 shows pseudo code of an exemplary algo-
rithm for use in performing automated image synthesis,
according to one implementation.
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DETAILED DESCRIPTION

[0011] The following description contains specific infor-
mation pertaining to implementations in the present disclo-
sure. One skilled in the art will recognize that the present
disclosure may be implemented in a manner different from
that specifically discussed herein. The drawings in the
present application and their accompanying detailed
description are directed to merely exemplary implementa-
tions. Unless noted otherwise, like or corresponding ele-
ments among the figures may be indicated by like or
corresponding reference numerals. Moreover, the drawings
and illustrations in the present application are generally not
to scale, and are not intended to correspond to actual relative
dimensions.

[0012] The present application discloses systems and
methods for performing automated image synthesis using a
substantially unsupervised deep learning model imple-
mented using a comb neural network architecture. The
present solution requires only unpaired observations of
target and source images, which may be still images or video
sequences that are then automatically processed and aligned.
The deep learning model disclosed herein employs a comb
shaped architecture for encoding target and source images in
a shared latent space and then splits into specialist neural
decoders, one for the target and one for the source. When
used to transfer a performance from a target actor to a source
performer, for example, the target image is encoded and then
decoded as the source, creating an image that has the
appearance of the source while matching the performance of
the target.

[0013] That is to say, the present application is directed to
disclosure of a model trained to transfer physical character-
istics of a source actor, such as voice, physical build, and
facial features, for example, onto a target behavioral perfor-
mance. Thus, as used herein, the “source” provides the
identity of a synthesized image while the “target” provides
the behavior that the synthesized image appearing to be the
source executes.

[0014] The present image synthesis solution utilizes a
progressive training regime to train the deep learning model.
That progressive training is initiated with low-resolution
images and gradually builds up to high-resolution. The
progressive training approach disclosed in the present appli-
cation not only speeds training but also advantageously
enables the present solution to greatly surpass the resolu-
tions achievable by the conventional art. In addition, the
present solution incorporates style-matching constraints and
image-fusion enhancements to produce natural looking
results largely free of artifacts.

[0015] It is noted that, as used in the present application,
the terms “automation,” “automated”, and “automating”
refer to systems and processes that do not require the
participation of a human user, such as a human editor or
artist. Although, in some implementations, a human editor or
artist may review a synthesized image produced by the
automated systems and according to the automated methods
described herein, that human involvement is optional. Thus,
the methods described in the present application may be
performed under the control of hardware processing com-
ponents of the disclosed automated systems.

[0016] It is further noted that, as defined in the present
application, a neural network (NN), also known as an
artificial neural network (ANN), is a type of machine
learning framework in which patterns or learned represen-
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tations of observed data are processed using highly con-
nected computational layers that map the relationship
between inputs and outputs. A “deep neural network™, in the
context of deep learning, may refer to a neural network that
utilizes multiple hidden layers between input and output
layers, which may allow for learning based on features not
explicitly defined in raw data. “Online deep learning” may
refer to a type of deep learning in which machine learning
models are updated using incoming data streams, and are to
designed to progressively improve their performance of a
specific task as new data is received and/or adapt to new
patterns of a dynamic system. As such, various forms of
ANNs may be used to make predictions about new data
based on past examples or “training data.” In various imple-
mentations, ANNs may be utilized to perform image pro-
cessing or natural-language processing.

[0017] FIG.1 shows a diagram of an exemplary system for
performing automated image synthesis using a comb neural
network architecture, according to one implementation. As
shown in FIG. 1, image synthesis system 100 includes
computing platform 102 having hardware processor 104,
system memory 106 implemented as a non-transitory stor-
age device storing image synthesis software code 110, and
may include display 108. It is noted that display 108 may be
implemented as a liquid crystal display (LCD), a light-
emitting diode (LED) display, an organic light-emitting
diode (OLED) display, or another suitable display screen
that performs a physical transformation of signals to light.

[0018] It is also noted that, as shown by FIG. 2, and
described below, image synthesis software code 110 imple-
ments a comb shaped neural network architecture configured
to produce one or more synthesized images (hereinafter
“synthesized image(s)””) 138 in an automated process. As
further shown in FIG. 1, image synthesis system 100 is
implemented within a use environment including source
data provider 124 providing source data 126, training plat-
form 140 providing training data 142, performance venue
148, and communication network 120.

[0019] Performance venue 148 is shown to include target
performer 134 and camera 130 used to obtain target image
data 132. Camera 130 may include one or more still image
red-green-blue (RGB) camera(s), and/or one or more RGB
video camera(s), for example. Also shown in FIG. 1 are
network communication links 122 communicatively cou-
pling source data provider 124, training platform 140, and
camera 130 with image synthesis system 100 via commu-
nication network 120. It is noted that although image syn-
thesis system 100 may receive source data 126 from source
data provider 124 via communication network 120 and
network communication links 122, in some implementa-
tions, source data provider 124 may take the form of a source
data database integrated with computing platform 102, or
may be in direct communication with image synthesis
system 100 as shown by dashed communication link 128.

[0020] Image synthesis software code 110, when executed
by hardware processor 104 of computing platform 102, is
configured to produce synthesized image(s) 138 based on
target image data 132 and source data 126. It is noted that,
although the present application refers to image synthesis
software code 110 as being stored in system memory 106 for
conceptual clarity, more generally, system memory 106 may
take the form of any computer-readable non-transitory stor-
age medium.
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[0021] The expression “computer-readable non-transitory
storage medium,” as used in the present application, refers
to any medium, excluding a carrier wave or other transitory
signal that provides instructions to hardware processor 104
of computing platform 102. Thus, a computer-readable
non-transitory medium may correspond to various types of
media, such as volatile media and non-volatile media, for
example. Volatile media may include dynamic memory,
such as dynamic random access memory (dynamic RAM),
while non-volatile memory may include optical, magnetic,
or electrostatic storage devices. Common forms of com-
puter-readable non-transitory media include, for example,
optical discs, RAM, programmable read-only memory
(PROM), erasable PROM (EPROM), and FLASH memory.

[0022] It is further noted that although FIG. 1 depicts
training platform 140 as a computer platform remote from
image synthesis system 100, that representation is also
merely exemplary. More generally, image synthesis system
100 may include one or more computing platforms, such as
computer servers for example, which may form an interac-
tively linked but distributed system, such as a cloud based
system, for instance. As a result, hardware processor 104 and
system memory 106 may correspond to distributed proces-
sor and memory resources within image synthesis system
100, while training platform 140 may be a component of
image synthesis system 100 or may be implemented as a
software module stored in system memory 106. In one such
implementation, computing platform 102 of image synthesis
system 100 may correspond to one or more web servers,
accessible over a packet-switched network such as the
Internet, for example. Alternatively, computing platform 102
may correspond to one or more computer servers supporting
a wide area network (WAN), a local area network (LAN), or
included in another type of limited distribution or private
network.

[0023] It is also noted that although the present inventive
principles are described below by reference to a specific use
case in which a source facial appearance is transfered onto
a target behavioral performance, also known as “face swap-
ping,” that implementation is discussed in the interests of
conceptual clarity and is not intended to limit the scope of
the disclosed concepts. Beyond its applicability to visual
effects, such as face swapping, the present solution has
applications to the broader field of learning disentangled
representations from data. In particular, the present solution
successfully separates information about dynamic behavior
(e.g., the encoded facial performance or content) from static
information (e.g., the identity of the face or style) without
the need for sequentially ordered data or an explicit
sequence model.

[0024] With respect to the exemplary use case of face
swapping, a standard face-swapping application will typi-
cally have a single target and a single source. In the
encoder-decoder framework, this leads to four possible
coding paths: (1) target to target, (2) source to source, (3)
target to source, and (4) source to target. The present image
synthesis solution generalizes this approach to P identities or
personas (hereinafter “personas™), leading to P* possible
coding paths in a single model.

[0025] By way of overview, the present solution
approaches transformation in the following way: Images
from all P personas are embedded in a shared latent space
using a common encoder. These embeddings are then
mapped back into pixel space using P specialized decoders,
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one for each persona having a latent space representation. In
other words, the pth decoder is used to create an image of the
pth persona. When the persona going into the encoder
matches the assignment of the decoder, the coding path is
identical to that of a standard autoencoder. When the per-
sonas differ, a face swap is performed.

[0026] FIG. 2 shows exemplary image synthesis software
code 210 suitable for use by image synthesis system 100 in
FIG. 1, according to one implementation. As shown in FIG.
2, image synthesis software code 210 includes image receiv-
ing and preprocessing module 212, and neural encoder 214
implemented as an ANN. Image synthesis software code 210
further includes multiple neural decoders 216(1), 216(2), . .
. 216(p-1), 216(p), where P is an integer value greater than
one (P>1), (hereinafter “neural decoders 216(1)-216(p)”)
implemented as respective ANNs, and synthesis module
218. Thus, neural decoders 216(1)-216(p) of image synthe-
sis software code 210 include at least two neural decoders.
Moreover, in some implementations, neural decoders 216
(1)-216(p) of image synthesis software code 210 include at
least three neural decoders, and may include tens or even
hundreds of neural decoders coupled to shared neural
encoder 214.

[0027] In addition, FIG. 2 shows source data 226 and
target image data 232 received as inputs to image synthesis
software code 210, and one or more synthesized images
(hereinafter “synthesized image(s)”) 238 provided as an
output by image synthesis software code 210. Also shown in
FIG. 2 are input 236 to neural encoder 214 (hereinafter
“input image 236”) that includes target image data 232 and
source data 226 identifying a persona corresponding to one
of neural decoders 216(1)-216(p), latent vector 244 carrying
the latent space representation of target image data 232, and
swapped image data 246 produced by one of neural decoders
216(p-1), 216(p), e.g., neural decoder 216(2), based on
latent vector 244. It is noted that, as shown in FIG. 2,
although only one of neural decoders 216(1)-216(p) receives
latent vector 244 from neural encoder 214, neural decoders
216(1)-216(p) are coupled in parallel to the output of neural
encoder 214.

[0028] Source data 226, target image data 232, image
synthesis software code 210, and synthesized image(s) 238
correspond respectively in general to source data 126, target
image data 132, image synthesis software code 110, and
synthesized image(s) 138, in FIG. 1. That is to say, source
data 126, target image data 132, image synthesis software
code 110, and synthesized image(s) 138 may share any of
the characteristics attributed to respective source data 226,
target image data 232, image synthesis software code 210,
and synthesized image(s) 238 by the present disclosure, and
vice versa. Thus, although not shown in FIG. 1, image
synthesis software code 110 may include features corre-
sponding respectively to image receiving and preprocessing
module 212, neural encoder 214, neural decoders 216(1)-
216(p), and synthesis module 218.

[0029] It is noted that neural encoder 214 and multiple
neural decoders 216(1)-216(p) form a comb shaped neural
network architecture in which latent vector 244 encoded and
output by neural encoder 214 may be selectively provided as
an input to any one of neural decoders 216(1)-216(p). In
some use cases, neural encoder 214 and each of neural
decoders 216(1)-216(p) may be implemented using respec-
tive ANNs in the form of convolutional neural networks
(CNNss), for example.
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[0030] FIG. 3A shows implementational details of CNN
encoder 314, according to one implementation, while FIG.
3B shows implementational details of exemplary CNN
decoder 316. As shown in FIGS. 3A and 3B, CNN encoder
314 receives input image 336 and outputs latent vector 344
as an input to CNN decoder 316.

[0031] CNN encoder 314, input image 336, and latent
vector 344 correspond respectively in general to neural
encoder 214, input image 236, and latent vector 244 in FIG.
2, while CNN decoder 316 corresponds in general to each of
neural decoders 216(1)-216(p). That is to say, neural encoder
214, input image 236, and latent vector 244 may share any
of the characteristics attributed to respective CNN encoder
314, input image 336, and latent vector 344 by the present
disclosure, and vice versa. Moreover, each of neural decod-
ers 216(1)-216(p) may share any of the characteristics
attributed to CNN decoder 316 by the present disclosure,
and vice versa. It is noted that in some implementations, the
parameter “o” of the Leaky rectified linear unit
(LeakyReL.U) identified in FIGS. 3A and 3B (hereinafter
“Og.r¢7) may be set at o ; ,~0.2.

[0032] The functionality of image synthesis system 100
including image synthesis software code 110/210 will be
further described by reference to FIG. 4 in combination with
FIGS. 1, 2, 3A, and 3B. FIG. 4 shows flowchart 450
presenting an exemplary method for use by a system to
perform automated image synthesis using a comb neural
network architecture. With respect to the method outlined in
FIG. 4, it is noted that certain details and features have been
left out of flowchart 450 in order not to obscure the discus-
sion of the inventive features in the present application.

[0033] As a preliminary matter, image synthesis software
code 110/210 including neural encoder 214/314 and neural
decoders 216(1)-216(p)/316 is trained using training plat-
form 140 and training data 142. As noted above, a progres-
sive training approach is used to train the various levels or
blocks of the comb shaped neural network architecture
implemented by image synthesis software code 110/210.

[0034] Progressive training begins training on very low-
resolution images, for example 4x4 pixel images, in order to
orient the network, and then gradually expands the net-
work’s capacity as higher resolution images are used for
training. For each level of progressive training, a new level
of the network is added, that is, a level containing a
composition of two convolutional layers and a down-scaling
or up-scaling layer in neural encoder 214/314 and neural
decoders 216(1)-216(p)/316, respectively. In other words,
neural encoder 214/314 and neural decoders 216(1)-216(p)/
316 are trained progressively, beginning with low-resolution
training data 142 and continuing with progressively higher
resolution training data 142 until a training output image
meeting a predetermined resolution threshold is synthesized.

[0035] The perturbation to the network caused by adding
new, untrained network components may be attenuated by a
gain parameter, a0, 1] that acts as a fader switch that
gradually blends the activations of the new network com-
ponents with those of the already trained, smaller network.
According to some implementations, each of neural decod-
ers 216(1)-216(p)/316 in the comb architecture is progres-
sively grown along with neural encoder 214/314. In one
implementation, during the first two stages of growth, which
correspond to the first two encoder and decoder levels of
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neural encoder 214/314 and neural decoders 216(1)-216(p)/
316, the decoder weights are tied to enforce consistency in
the latent space.

[0036] Thus, each of neural decoders 216(1)-216(p)/316
includes multiple decoder levels each associated with a
respective weighting factor, where the respective weighting
factors for some decoder levels, e.g., the first and second
decoder levels, are tied together across all of neural decoders
216(1)-216(p)/316. In those implementations, the decoder
weights may be trained independently from the third level
on. The same blending weight a may be used across all P
neural decoders.

[0037] Training data 142 may be partitioned into P sub-
sets, where each subset represents the individual persona
corresponding to a respective one of neural decoders 216
(1)-216(p)/316. It is noted that the partitioning of training
data 142 into P subsets constitutes a form of light supervi-
sion in the present training approach. However, all other
training steps are unsupervised.

[0038] Letx,(t,) be the t,th image belonging to persona p.
Since the present deep learning model is agnostic to data
ordering, the t, index is hereinafter dropped to avoid nota-
tional clutter. All P personas corresponding respectively to
neural decoders 216(1)-216(p)/316 are encoded, E, via
shared neural encoder 214/314, and the P s decoders, D,
pEll, P], are created to produce the pixel space basis
representations of the personas. This results in X,,=D,(E(x,))
~X,,.

[0039] A naive approach to training enforces specializa-
tion in P neural decoders 216(1)-216(»)/316 by denying
them any training signal for all inputs x, where q=p. This
way, each of neural decoders 216(1)-216(p)/316 would
never actually “see” any training data 142 other than that for
their respectively corresponding persona and therefore could
not form a basis for anything other than those respective
personas. However, such an approach is undesirable because
it creates problems during training and is consequently
avoided in the present progressive training scheme.

[0040] Decoding is ultimately about associating an input
code with an output, and a sufficiently powerful decoder
need only be able to tell its inputs apart in order to approxi-
mately invert them back into image space. Because neural
encoder 214/314 and neural decoders 216(1)-216(p)/316 are
all initialized randomly, there is nothing to privilege one
decoder’s interpretation of the latent space from another’s
during the early stages of training. If neural decoders 216
(1)-216(p)/316 were trained using the naive approach
described above, they would essentially be trained sepa-
rately, and the training signal from one of neural decoders
216(1)-216(p)/316 could effectively overwrite the progress
from training another of neural decoders 216(1)-216(p)/316.
One solution to this problem is to enforce a global interpre-
tation of the latent space by tying together the weights of the
first few levels of the decoders, as noted above. That solution
enforces a consistent association with the latent code across
all P neural decoders 216(1)-216(p)/316.

[0041] According to one exemplary training strategy, each
level or block is trained for 10° iterations. During an itera-
tion, the P personas corresponding respectively to neural
decoders 216(1)-216(p)/316 are shuffled, a batch of images
from that persona are selected, and a gradient update is
performed. Training then moves to the next persona and the
process is repeated. It is noted that this results in neural
encoder 214/314 and all shared decoder weights receiving P
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gradient updates during a single iteration, while the inde-
pendent decoder weights receive one update per iteration.
The gain parameter a increases linearly such that it reaches
1 after L/2 iterations, where L is the total number of
progressive training levels (see FIGS. 3A and 3B).

[0042] In one implementation, the level-dependent loss
function used during training may be expressed as:

1 & (Equation 1)
L= WZ fibo, Om(x,), 20,

where, in the exemplary use case of face swapping, x, is the
ground-truth image, m(x,) is the mask of the source face,
)N(p(P):DP(E(Xp)) is the reconstruction, and O represents
elementwise multiplication. However, in implementations in
which it is advantageous or desirable to be more invariant to
the background in target image data 132/232, the following
loss function may be used during training:

[ (Equation 2)
Li= 5D Sl Omlz,) . ¥ Omix,)).

[0043] For levels O<l<2, f, may be set to be SSIM, a
structural similarity index introduced by Wang et al., and
known in the art. According to one implementation, the
input images are upscaled to 16x16 during the first two
levels. For the remaining levels, f, may be set to be MS-
SSIM, the multi-scale version of SSIM, also introduced by
Wang et al. and known in the art. The Adam optimizer
known in the art may be used for training with a learning rate
of 10™*. After reaching 10° iterations in the final level, the
learning rate may be decreased to 107>, Once training is
completed, image synthesis software code 110/210 may be
utilized in an automated process to produce synthesized
image(s) 138/238 based on source data 126/226 and target
image data 132/232 as outlined by flowchart 450.

[0044] Referring now to FIG. 4 in combination with FIGS.
1, 2, 3A, and 3B, flowchart 450 begins with receiving target
image data 132/232, and source data 126/226 that identifies
one of multiple personas, where the multiple personas
correspond respectively to neural decoders 216(1)-216(p)/
316 of image synthesis software code 110/210 (action 451).
In the exemplary use case of face swapping for performance
transfer, for example, each of neural decoders 216(1)-216
(»)/316 may correspond to a respective one of multiple
personas in the form of specific male or female human actors
or performers.

[0045] For instance, under some circumstances it may be
advantageous or desirable to transfer a performance by a
performer to another actor, or to transfer a performance by
an actor having a certain age to that same actor at a different
age, either younger or older. Other applications include stunt
scenes that would be dangerous for an actor to perform but
still require high quality facial images, as well as use cases
in which the same actor plays multiple different roles
concurrently, which requires manually painstaking and time
consuming filming procedures in the conventional art.
[0046] Thus, in some implementations, target image data
132/232 includes a target facial representation and source
data 126/226 identifies a facial representation of a persona
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corresponding to one of neural decoders 216(1)-216(p)/316.
Moreover, in some implementations, target image data 132/
232 depicts a performance by a first performer and source
data 126/226 identifies a second performer. It is noted that
in some implementations, target image data 132/232 may
include a target still image, while in some implementations,
target image data 132/232 may include a target video
sequence.

[0047] Target image data 132/232 and source data 126/226
may be received by image synthesis software code 110/210
of image synthesis system 100, executed by hardware pro-
cessor 104, and using image receiving and preprocessing
module 212. As shown in FIG. 1, in one implementation,
target image data 132/232 may be obtained by camera 130
of performance venue 148, and may be received by image
synthesis system 100 from camera 130 via communication
network 120 and network communication links 122.
[0048] Flowchart 450 continues with mapping target
image data 132/232 to a latent space representation, i.e.,
latent vector 244/344, of target image data 132/232 using
neural encoder 214/314 (action 452). Referring to FIGS. 2,
3A, and 3B, image receiving and preprocessing module 212
of image synthesis software code 110/210 receives target
image data 132/232 and source data 126/226, and provides
input image 236/336 to neural encoder 214/314. Image
synthesis software code 110/210, when executed by hard-
ware processor 104, performs an encoding process that maps
target image data 132/232 to a latent space representation of
target image data 132/232 that is then output to one of neural
decoders 216(1)-216(p)/316 as latent vector 244/344.
[0049] In some implementations, it may be advantageous
or desirable to preprocess target image data 132/232 prior to
its encoding by neural encoder 214. Preprocessing of target
image data 132/232 may include face alignment and may be
based on facial landmarks identified in target image data
132/232, for example. Face alignment and other preprocess-
ing steps may be performed using image receiving and
preprocessing module 212 of image synthesis software code
110/210. Examples of facial landmarks suitable for use in
face alignment may include the location of eye centers, eye
corners, mouth corners, ear positions, and so forth.

[0050] For example, for target image data 132/232, a face
may be detected and the facial landmarks may be localized.
Target image data 132/232 may then be rotated and scaled
so that the eyes lie on a line having a predetermined
orientation and so as to have a predetermined interocular
distance. Subsequent to the described rotating and scaling,
target image data 132/232 may be cropped and resized, for
example to 1024x1024 pixels. Input image 236/336 “x,”
including target image data 132/232 is fed into neural
encoder 214/314 and mapped into its latent space represen-

tation *z,”, carried by latent vector 244/344, where z,=E
(x,)-
[0051] With respect to face alignment, it is noted that the

Deep Alignment Network introduced by Kowalski et al. and
known in the art may be adequate for swapping faces in a
single image. For video sequences, however, the normaliza-
tion technique used in the Deep Alignment Network results
in unsatisfactory temporal artifacts.

[0052] The artifacts are caused by rapid frame-to-frame
shifts of the facial landmark positions at high resolution,
since very small localization inconsistencies at 128x128
resolution are amplified at 1024x1024. To mitigate this
undesired effect, the precision of facial landmark localiza-
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tion needs to be increased. To that end, in the present novel
and inventive approach, an initial detection and alignment is
performed and the width w of the face bounding box is
noted. The location of the initially detected bounding box by
pw pixels may then be translated in the eight principal
directions of the image plane, each time performing a new
face alignment, and the resulting nine sets of localized
landmark points may be averaged. We have observed that
using $=0.05 at 1024x1024 resolution removes substantially
all detectable temporal artifacts.

[0053] Flowchart 450 continues with identifying one of
neural decoders 216(1)-216(p)/316 for decoding the latent
space representation of target image data 132/232 based on
the persona identified by source data 126/226 (action 453).
As discussed above, each of neural decoders 216(1)-216(p)/
316 corresponds to a respective one persona. Action 453
corresponds to identifying, based on input image 236/336,
the particular one of neural decoders 216(1)-216(p)/316
corresponding to the persona identified by source data
126/226.

[0054] According to the exemplary implementation shown
in FIG. 2, neural decoder 216(2)/316 of neural decoders
216(1)-216(p)/316 is identified for decoding the latent space
representation of target image data 132/232 carried by latent
vector 244/344. Identification of neural decoder 216(2)/316
in action 453 may be performed by image synthesis software
code 110/210, executed by hardware processor 104, and
using one or both of image receiving and preprocessing
module 212 and neural encoder 214/314.

[0055] Flowchart 450 continues with using the identified
one of neural decoders 216(1)-216(p)/316, e.g., neural
decoder 216(2)/316, to decode the latent space representa-
tion of target image data 132/232 carried by latent vector
244/344 as the persona identified by source data 126/226 to
produce swapped image data 246 (action 454). Decoding of
the latent space representation of target image data 132/232
carried by latent vector 244/344 to produce swapped image
data 246 may be performed by image synthesis software
code 110/210, executed by hardware processor 104, and
using one of neural decoders 216(1)-216(p)/316. Swapped
image data 246 may be expressed as “)N(p(q)”, where )N(p(q)
=D,(z,).

[0056] Flowchart 450 can conclude with blending
swapped image data 246 with target image data 132/232 to
produce synthesized image(s) 138/238 of target image data
132/232 with the persona identified by source data 126/226
(action 455). Blending of swapped image data 246 with
target image data 132/232 to produce synthesized image(s)
138/238 may be performed by image synthesis software
code 110/210, executed by hardware processor 104, and
using synthesis module 218. It is noted that, according to the
novel and inventive automated image synthesis solution
disclosed herein, synthesized image(s) 138/238 produced
using image synthesis software code 110/210 may have
megapixel resolution.

[0057] It is further noted that blending a generated face,
for example, with an original image is a nontrivial task.
Simply pasting a source face onto a target, even if the pose
and facial expression are a perfect match, will typically
result in inconsistent coloring and lighting as well as an
obvious boundary between the source and target portions of
the image. Many conventional approaches to blending use
Poisson blending, which seeks to match the gradient of the
pasted source region to that of the target region it is being
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pasted into. That conventional method can achieve a plau-
sible result for still images. In a video sequence, however, if
the boundary of the face changes from frame to frame, the
strict boundary constraint imposed by the Poisson method
can affect the lighting of the whole face, resulting in an
unrealistic flickering effect.

[0058] According to the present inventive principles, an
enhanced multi-band blending technique is introduced and
used. Basic multi-band blending blends images at each level
of a Laplacian pyramid and then reconstructs a final,
smooth-boundary image. The enhanced multi-band blending
introduced herein creates a custom Laplacian pyramid for
output images by copying low-level components of the
source-image pyramid to enforce the global image charac-
teristics, and by propagating foreground and background
masks through the pyramid. We enforce, that the boundary
smoothing effect is propagated only in the interior direction
of the image, e.g., the interior direction of a face. Conse-
quently, the present enhanced multi-band blending tech-
nique ensures that the outer image outline, e.g., the outline
of a face, would not be smoothed by the blending procedure.
Pseudo code 500 of an exemplary algorithm for use in
performing enhanced multi-band blending is shown in FIG.
5

[0059] In implementations in which target image data
132/232 includes a target facial representation and source
data 126/226 identifies a facial representation of a persona
corresponding to one of neural decoders 216(1)-216(p)/316,
synthesized image(s) 138/238 may substitute the facial
representation of the persona for the target facial represen-
tation in target image data 132/232. In implementations in
which target image data 132/232 depicts a performance by
a first performer and source data 126/226 identifies a second
performer, synthesized image(s) 138/238 may transfer the
performance by the first performer to the second performer.
In implementations in which target image data 132/232
includes a target video sequence, synthesized image(s) 138/
238 may include a sequence of synthesized video frames of
the target video sequence with the persona identified by
source data 126/226.

[0060] Although not included in flowchart 450, in some
implementations, the present method can include rendering
synthesized image(s) 138/238 on display 108 of image
synthesis system 100. As noted above, display 108 may
include an LCD, an LED display, an OLED display, or any
other suitable display screen that performs a physical trans-
formation of signals to light. Rendering of synthesized
image(s) 138/238 on display 108 may be performed by
image synthesis software code 110/210, executed by hard-
ware processor 104 of computing platform 102.

[0061] Thus, the present application discloses systems and
methods for performing automated image synthesis using a
comb neural network architecture that overcome the draw-
backs and deficiencies in the conventional art. From the
above description it is manifest that various techniques can
be used for implementing the concepts described in the
present application without departing from the scope of
those concepts. Moreover, while the concepts have been
described with specific reference to certain implementations,
a person of ordinary skill in the art would recognize that
changes can be made in form and detail without departing
from the scope of those concepts. As such, the described
implementations are to be considered in all respects as
illustrative and not restrictive. It should also be understood
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that the present application is not limited to the particular
implementations described herein, but many rearrange-
ments, modifications, and substitutions are possible without
departing from the scope of the present disclosure.
What is claimed is:
1. An image synthesis system comprising:
a computing platform having a hardware processor and a
system memory storing a software code including a
neural encoder and a plurality of neural decoders each
corresponding to a respective one of a plurality of
personas;
the hardware processor configured to execute the software
code to:
receive a target image data, and a source data that
identifies one of the plurality of personas;

map the target image data to a latent space represen-
tation of the target image data using the neural
encoder;

identify one of the plurality of neural decoders for
decoding the latent space representation of the target
image data based on the one of the plurality of
personas identified by the source data;

use the identified one of the plurality of neural decoders
to decode the latent space representation of the target
image data as the one of the plurality of personas
identified by the source data to produce a swapped
image data; and

blend the swapped image data with the target image
data to produce one or more synthesized images.

2. The image synthesis system of claim 1, wherein the
plurality of neural decoders comprises at least three neural
decoders.

3. The image synthesis system of claim 1, wherein the
plurality of neural decoders are coupled in parallel to an
output of the neural encoder.

4. The image synthesis system of claim 1, wherein the
neural encoder and each of the plurality of neural decoders
comprises a convolutional neural network (CNN).

5. The image synthesis system of claim 1, wherein the
target image data includes a target video sequence, and
wherein the one or more synthesized images comprise a
sequence of synthesized video frames of the target video
sequence with the one of the plurality of personas identified
by the source data.

6. The image synthesis system of claim 1, wherein the one
or more synthesized images have megapixel resolution.

7. The image synthesis system of claim 1, wherein the
target image data depicts a performance by a first performer
and the source data identifies a second performer, and
wherein the one or more synthesized images transfer the
performance by the first performer to the second performer.

8. The image synthesis system of claim 1, wherein the
target image data includes a target facial representation and
the source data identifies a facial representation of the one of
the plurality of personas, and wherein the one or more
synthesized images substitute the facial representation of the
one of the plurality of personas for the target facial repre-
sentation in the target image data.

9. The image synthesis system of claim 1, wherein the
neural encoder and the plurality of neural decoders are
trained progressively, beginning with low resolution training
data and continuing with progressively higher resolution
training data until a training output image meeting a prede-
termined resolution threshold is synthesized.
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10. The image synthesis system of claim 1, wherein each
of the plurality of neural decoders comprises a plurality of
decoder levels each associated with a respective weighting
factor, and wherein the respective weighting factors for
some decoder levels are tied together across all of the
plurality of neural decoders.

11. A method for use by an image synthesis system
including a computing platform having a hardware proces-
sor and a system memory storing a software code including
a neural encoder and a plurality of neural decoders each
corresponding to a respective one of a plurality of personas,
the method comprising:

receiving, by the software code executed by the hardware

processor, a target image data, and a source data that
identifies one of the plurality of personas;

mapping, by the software code executed by the hardware

processor, the target image data to a latent space
representation of the target image data using the neural
encoder;

identifying, by the software code executed by the hard-

ware processor, one of the plurality of neural decoders
for decoding the latent space representation of the
target image data based on the one of the plurality of
personas identified by the source data;

using the identified one of the plurality of neural decoders,

by the software code executed by the hardware pro-
cessor, to decode the latent space representation of the
target image data as the one of the plurality of personas
identified by the source data to produce a swapped
image data; and

blending, by the software code executed by the hardware

processor, the swapped image data with the target
image data to produce one or more synthesized images.

12. The method of claim 11, wherein the plurality of
neural decoders comprises at least three neural decoders.

13. The method of claim 11, wherein the plurality of
neural decoders are coupled in parallel to an output of the
neural encoder.
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14. The method of claim 11, wherein the neural encoder
and each of the plurality of neural decoders comprises a
convolutional neural network (CNN).

15. The method of claim 11, wherein the target image data
includes a target video sequence, and wherein the one or
more synthesized images comprise a sequence of synthe-
sized video frames of the target video sequence with the one
of the plurality of personas identified by the source data.

16. The method of claim 11, wherein the one or more
synthesized images have megapixel resolution.

17. The method of claim 11, wherein the target image data
depicts a performance by a first performer and the source
data identifies a second performer, and wherein the one or
more synthesized images transfer the performance by the
first performer to the second performer.

18. The method of claim 11, wherein the target image data
includes a target facial representation and the source data
identifies a facial representation of the one of the plurality of
personas, and wherein the one or more synthesized images
substitute the facial representation of the one of the plurality
of personas for the target facial representation in the target
image data.

19. The method of claim 11, wherein the neural encoder
and the plurality of neural decoders are trained progres-
sively, beginning with low resolution training data and
continuing with progressively higher resolution training data
until a training output image meeting a predetermined
resolution threshold is synthesized.

20. The method of claim 11, wherein each of the plurality
of neural decoders comprises a plurality of decoder levels
each associated with a respective weighting factor, and
wherein the respective weighting factors for some decoder
levels are tied together across all of the plurality of neural
decoders.



